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Abstract. Forecasting atmospheric CO2 concentrations on synoptic time scales (~days) can benefit the 

planning of field campaigns by better predicting the location of important gradients. One aspect of this, 10 

accurately predicting the day-to-day variation in biospheric fluxes poses a major challenge. This 

research aims to investigate the feasibility of using a diagnostic light-use-efficiency model, the 

Vegetation Photosynthesis Respiration Model (VPRM), to forecast biospheric CO2 fluxes on the time 

scale of a few days. As input the VPRM model requires downward shortwave radiation, 2 m 

temperature, and Enhanced Vegetation Index (EVI) and Land Surface Water Index (LSWI), both of 15 

which are calculated from MODIS reflectance measurements. Flux forecasts were performed by 

extrapolating the model input into the future, i.e. using downward shortwave radiation and temperature 

from a numerical weather prediction (NWP) model, as well as extrapolating the MODIS indices to 

calculate future biospheric CO2 fluxes with VPRM. A hindcast for biospheric CO2 fluxes in Europe in 

2014 has been done and compared to eddy covariance flux measurements to assess the uncertainty 20 

from different aspects of the forecasting system. In total the range-normalized mean absolute error 

(normalized) of the 5 day flux forecast at daily timescales is 7.1%, while the error for the model itself is 

15.9%. The largest forecast error source comes from the meteorological data, which fail to accurately 

predict cloud cover, leading to overestimated shortwave radiation in the model. The error contribution 

from all error sources is similar at each flux observation site, and is not significantly dependent on 25 

vegetation type.  

1 Introduction 

Human activities have significantly influenced the carbon cycle of the earth system since 

industrialization, with the accumulation of greenhouse gases in the atmosphere leading to radiative 

forcing and climate change (IPCC, 2014). The carbon exchange between the surface and the 30 

atmospheric still remains largely uncertain due to the complexity of processes and a lack of 

observations (Le Quere et al., 2009). Therefore more measurements are needed, especially over 

emission hotspots and regions lacking observations. Field campaigns to measure greenhouse gases, 

such as research flights and measurements in remote areas, can fill the observation gap in the 

troposphere and over regions not covered by existing networks, but they are often time-limited. To 35 

make the best use of these limited measurements, field campaigns require careful planning. An 
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atmospheric CO2 forecast on synoptic time scales (~days) can be helpful in such cases, for it provides 

an estimate of what signals are expected during the experiment and a physical explanation of the 

observations. 

The research campaign CoMet (Carbon dioxide and Methane Mission), organized by the Deutsches 40 

Zentrum für Luft- und Raumfahrt (DLR), made a series of airborne and ground-based measurements of 

greenhouse gases in Europe. The campaign took place from May 15th to June 12th 2018, during which 

three aircraft participated, including the High Altitude and LOng Range Research Aircraft (HALO) and 

three light aircraft. During the campaign the HALO was equipped with an Integrated Path Differential 

Absorption (IPDA) Lidar (CHARM-F) (Amediek et al., 2017), and carried out nine flights with a total 45 

of 65 flight hours. Continuous online in situ CO2, CO, CH4 and water vapor measurements were also 

made onboard with the Jena Instrument for Greenhouse gas measurements (JIG) and air samples were 

collected with the Jena Air Sampler (JAS). The campaign performed measurements over different 

surfaces from northern Europe to North Africa to assess and validate the new remote sensing 

instrument CHARM-F. Special attention was paid to two areas: Berlin (and nearby power plants) and 50 

the Upper Silesian basin, which are significant European point sources of CO2 and CH4 respectively. 

Ground-based and light aircraft measurements were also made in the two regions with the remote 

sensing instrument Methane Airborne Mapper (MAMAP) (Gerilowski et al., 2011) and portable 

ground-based Fourier Transform Infrared Spectrometers (FTIR) (Butz et al., 2017). 

During the planning of the campaign, a CO2 and CH4 forecasting system was developed to support the 55 

mission; this paper focuses on the biogenic fluxes for the CO2 component. The forecast provided 5 day 

CO2 forecast fields at a fine spatial resolution (2 km x 2 km) within the observing area, and a coarser 

resolution over the European domain (10 km x 10 km). The forecast product is not only helpful in 

terms of planning observations, offering meteorology and GHG fields to capture CO2/CH4 plumes, but 

can also provide a priori vertical information for the retrieval of remote sensing observations.  60 

There are several existing models that can simulate atmospheric CO2 on an appropriate scale, including 

Eulerian mesoscale models such as WRF-GHG (Beck et al., 2011;Pillai et al., 2016) and CHIMERE 

(Aulagnier et al., 2010). These models consist of an atmospheric tracer transport model coupled to 

fluxes representing the source and sink processes of CO2. By providing meteorological forecast fields 

and future fluxes of CO2 to the model, the forecast CO2 concentration fields can be obtained. The 65 

challenge of CO2 forecasting comes with the provision of accurate CO2 flux variations on sub-daily 

time scales. A global atmospheric CO2 forecast system has been developed as part of the Monitoring of 

Atmospheric Composition and Climate – Interim Implementation (MACC-II) service (Agusti-Panareda 

et al., 2014;Agusti-Panareda et al., 2016). These studies have shown that although transport plays a 

first order role in synoptic CO2 variability, the day-to-day variability of NEE also plays an important 70 

role. Therefore it is crucial for CO2 forecasts to capture the day-to-day NEE variability in real-time, 

instead of using climatological values. 

There are many models that can simulate biospheric CO2 NEE on hourly time scales (Boussetta et al., 

2013;Mahadevan et al., 2008). These models can be briefly grouped into two types: process-based 

models and light use efficiency (LUE) models. Process-based models use meteorological data as input 75 

and simulate the physiological processes of vegetation, for example BIOME-BGC (Running and Hunt 
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Jr, 1993), TEM (Zhuang et al., 2003) or the Carbon Exchange in the Vegetation-Soil-Atmosphere 

model (CEVSA) (Woodward et al., 1995). Such models usually need a number of parameters to 

describe the complex vegetation processes responding to meteorological drivers. The second type, LUE 

models, regard ecosystem gross primary production (GPP) as the product of photosynthetically active 80 

radiation (PAR), the fraction of photosynthetically active radiation absorbed by the photosynthetically 

active portion of the vegetation (FAPARPAV), and the radiation use efficiency (𝜀). Such models include 

the Vegetation Photosynthesis and Respiration Model (VPRM) (Xiao et al., 2004;Mahadevan et al., 

2008), the MODIS Daily Photosynthesis Model (Running et al., 2000) and the Carnegie-Ames-

Stanford Approach (CASA) (Potter et al., 1993).  85 

The CO2 forecast in MACC-II uses the process-based model CTESSEL to compute biospheric CO2 

fluxes and evapotranspiration online (Boussetta et al., 2013;Agusti-Panareda et al., 2016), which makes 

the two variables consistent in the forecast system. However the challenge of providing accurate CO2 

fluxes is due to the complexity of vegetation processes and the lack of near-real-time (NRT) 

observations on vegetation state. Therefore, using a LUE model for CO2 flux forecasting, which is a 90 

data-driven approach having less parameters compared to process-based models, is a possible way to 

improve the quality of CO2 fluxes in forecasting. It should be note that unlike the Copernicus 

Atmosphere Monitoring Service (CAMS) CO2 forecasting which is operational and global, we target to 

build a regional CO2 forecast system and only operate the forecast within a shorter period (e.g. several 

months). Therefore the issue of CO2 budget conservation is less important comparing to a operational 95 

global forecast model. In our case, we predict CO2 fluxes based on the LUE model VPRM, which is 

driven by the Enhanced Vegetation Index (EVI) and the Land Surface Water Index (LSWI) as well as 

the meteorological variables 2 m air temperature and downward shortwave radiation. The EVI and 

LSWI are derived from Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance data, in 

which the MOD09A1N product provides NRT surface reflectance data, thus the NRT observations on 100 

vegetation state can be used in flux forecasting. VPRM has a strong predictive ability for NEE while 

maintaining simplicity in having only four parameters for each of the seven vegetation types, which 

makes it suitable for our case. The flux forecast is then made by predicting the input of VPRM, for 

which different prediction methods were tested. Although the uncertainties in VPRM have been well 

assessed by previous research(Lin et al., 2011), it is still unknown how does such LUE model perform 105 

regarding of flux forecasting in synoptic time scale. 

This study describes the development and assessment of a biospheric CO2 flux forecast based on the 

LUE model VPRM, with the goal of providing accurate hourly 5 day flux forecasts. By using a 

hindcast and comparing to flux tower sites across Europe the error in the prediction is evaluated, and 

the predictive ability of the CO2 flux forecasts is assessed. 110 

2 Methodology 

The CO2 flux forecast consists of two steps as shown in Figure 1. Model inputs are first predicted 5 

days into the future, then NEE is estimated based on the standard VPRM model, using parameters 

optimized in previous studies (Kountouris et al., 2018). Each input which must be forecast results in 
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corresponding errors. We systematically evaluate the flux forecasting error associated with each of 115 

these predictands.  

This section describes the framework of the VPRM forecasting model for biospheric CO2 fluxes, as 

well as the method used to evaluate the error introduced by each element of the forecast.  

For the meteorological input data, we use hourly ECMWF 5 day forecasts of temperature and short 

wave radiation. The EVI and LSWI indices are derived from MODIS surface reflectance data. These 120 

provide the indices for an average of the past eight days, and we forecast these indices for the next five 

days based on linear extrapolation or persistence. We then use these predicted input data to generate 

NEE using VPRM. 

2.1 VPRM data processing 

2.1.1 Standard processing for past periods 125 

The flux estimation is based on VPRM, a light use efficiency (LUE) model that calculates GPP with 

remote sensing data and meteorological data as inputs. The equation of GPP estimation is as follow:  

𝐺𝑃𝑃 = 𝜀×𝐹𝐴𝑃𝐴𝑅!"#×
!

!!!"#/!"#!
×𝑃𝐴𝑅       (1) 

The light use efficiency 𝜀 can be decomposed as: 

𝜀 = 𝜆×𝑇!"#$#%×𝑊!"#$#%×𝑃!"#$#%        (2) 130 

Where 𝑇!"#$#%,  𝑊!"#$#% and 𝑃!"#$#% represent the temperature sensitivity of photosynthesis, the water 

stress effect, and the effects of leaf age on canopy photosynthesis, respectively, while 𝜆 is an adjustable 

parameter in the model. Among them, 𝑇!"#$#%  is estimated from air temperature, and 𝑊!"#$#%  and 

𝑃!"#$#% are estimated from LSWI. See details in Mahadevan et al. 2008. 

The 𝐹𝐴𝑃𝐴𝑅!"# in the model is estimated as a linear function of EVI, and PAR is closely correlated 135 

with downward shortwave radiation. Therefore the complete expression for GPP in VPRM is: 

𝐺𝑃𝑃 = (𝜆×𝑇!"#$#%×𝑊!"#$#%×𝑃!"#$#%)×𝐸𝑉𝐼×
!

!! !"#
!"#!

×𝑃𝐴𝑅     (3) 

While the vegetation respiration is estimated by a simple linear model: 

𝑅 = 𝛼×𝑇!!" + 𝛽          (4) 

Where Tair is the air temperature and 𝛼 and 𝛽 are vegetation-class-specific parameters. 140 

The input of VPRM can be categorized into two groups: remote sensing data and meteorological data. 

The remote sensing data consist of EVI and LSWI at 10 km spatial resolution (same resolution with 

atmospheric transport model), where the EVI and LSWI are aggregated from MODIS surface 

reflectance 8 day L3 Global 500m (MOD09A1) version 6 data. It should be noted that in the 

forecasting model, the MODIS NRT surface reflectance data (MOD09A1N) would be used. A locally 145 

weighted least squares (LOESS) filter (α=0.17) is then applied to reduce the noise. The vegetation 

classification map (SYNMAP) (Jung et al., 2006) is also a product derived from remote sensing. The 

meteorological data include air temperature at 2m and downward shortwave radiation at the surface, 

which are obtained from a numerical weather prediction (NWP) model product, in our case the 

operational forecast archive from the European Centre for Medium-Range Weather Forecasts 150 

(ECMWF). In VPRM, there are four parameters (𝜆, 𝑃𝐴𝑅!, 𝛼, 𝛽) for each vegetation type. Model 
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calibration for these parameters has been done using flux measurements in Europe in 2007(Kountouris 

et al., 2018). 

2.1.2 Processing for flux prediction 

To use this diagnostic model in a predictive mode, we need to forecast all VPRM input variables five 155 

days into the future. Remote sensing data and meteorological data are predicted in different ways.  

For the meteorological data, forecasts from a numerical weather prediction (NWP) model are needed. 

In this study, in order to assess the errors brought in by the meteorological forecasting, 5 day forecasts 

of 2 m temperature and downward shortwave radiation at the surface for each day of the year were 

used. The meteorological forecast is from the ECMWF operational forecast archive, with class “od” 160 

and type “fc”. 

As for the remote sensing data, three sources of error had to be considered: the error induced by using 

the NRT version of the MODIS reflectances rather than the final product, the error of estimating the 

value of the indices into the future, and the effect of the LOESS filter on the end value of the dataset.  

We begin by describing the LOESS filter. This filter is usually applied to a full year of data, and when 165 

smoothing a truncated dataset there is an edge effect, meaning that when new data are added to the time 

series the smoothing is repeated, the output at the former edge point will change slightly. In the 

following section we define the error caused by such an edge effect as “error due to data truncation”.  

Following the filtering, the smoothed data are extrapolated five days into the future, either by linear 

extrapolation or by assuming persistence. The optimal extrapolation method was selected after testing 170 

the error contribution of each method. 

The last error source comes from the difference between MODIS NRT and the standard product. The 

standard product is processed with the best available ancillary, calibration, and geolocation information 

while changes have been made in the NRT processing to expedite the data availability (See 

https://earthdata.nasa.gov/earth-observation-data/near-real-time/near-real-time-versus-standard-175 

products). 

2.2 Uncertainty analysis 

The potential error sources of this flux forecasting system are as follows: (1) the VPRM model itself, 

(2) using analysis rather than site-level meteorological data, (3) using ECMWF forecast meteorology, 

(4) using NRT MODIS data, (5) using LOESS filtering to smooth the MODIS data, and (6) the 180 

prediction of MODIS data. The error (6) contains two parts: (6a) EVI prediction and (6b) LSWI 

prediction. In the following discussion we use the numbering (1) to (6) to denote these error sources. 

We define (1) as the “model error”, and (2) to (6) as the “forecast errors”. The model error has been 

well described in previous research, and in general VPRM shows a good predictive ability (Mahadevan 

et al., 2008). In this study, we aim to quantify the forecast error, and the error contribution from each of 185 

the error sources.  

In order to evaluate both the model error and the forecast error, a hindcast using the CO2 flux forecast 

model has been done for the year 2014 for Europe. The evaluation and comparison was done at two 

spatial levels: at the flux observation site level, and at the European domain level (1/8° longitude × 
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1/12° latitude). The comparison at site level aims to evaluate both the model error and the forecast error 190 

at locations with different vegetation types, while over the European domain, the aim is to investigate 

the spatial pattern of each forecast error term. 

The surface CO2 flux observation data comes from eddy covariance tower measurements from the 

FLUXNET2015 tier one (open data) dataset (Baldocchi et al., 2001). Thirty-three European 

observation sites for which both MODIS data and flux measurements for 2014 are available were 195 

selected for data-model comparison. The selected sites’ ID, location, vegetation type and their data 

DOI are listed in table 1. 

To test the error contribution of the model and the 5 day flux forecast, the following experiments using 

the VPRM forecast model were carried out to evaluate the error contribution from different sources 

separately. Although the CO2 flux forecast targets hourly flux prediction for the next 5 days, model 200 

error and forecast error were analyzed on a daily time scale, as this scale is more relevant for synoptic 

CO2 variability in the atmosphere.  

The control simulation uses standard VPRM as a reference model with “perfect” input, meaning the 

MODIS EVI and LSWI standard products as well as shortwave radiation and temperature observed at 

the flux site. By comparing the modeled NEE to flux measurements, we can estimate the VPRM model 205 

error (1). 

The experimental simulations a to f then included the error sources (2) to (6) in the VPRM model input 

data separately, and these are compared to the reference simulation in order to isolate these individual 

error contributions. The experiments aim to estimate the upper limit of forecast error, therefore in 

simulations b and f, 96 h to 120 h meteorological forecasts, i.e. the last day (5th) of a 5 day forecast, 210 

were used for each day of the year. For simulations d and f, since the MODIS EVI and LSWI products 

has an 8 day period, MODIS data were first linearly interpolated to a daily scale. Then for each day of 

the year MODIS data on the nth day were predicted from data on the n-5th day.  

There is a challenge in simulation e in that there are no achieved NRT data for 2014, thus it is 

impossible to have a comparison on the same basis with other the simulations. Instead we look into the 215 

model’s sensitivity of NEE to EVI and LSWI bias, and also compare the NRT EVI and LSWI, which 

we archived from February to June in 2018 for 120 days, to the standard MODIS product over the save 

period. In this way we were able to estimate the magnitude of the NRT indices’ error and its impact on 

the model’s output NEE.  

In order to make the 33 different site results comparable, the simulation output NEE  was first 220 

aggregated to daily averages, and then normalized by the range (i.e. the difference between maximum 

and minimum) of annual NEE at each site. The biasNEE, which is defined as the output NEE from the 

experimental simulation minus the same variable from the reference model, was then calculated and 

normalized by the same scalar at each site. By applying such a normalization, positive and negative 

NEE keep their sign, and the normalized biasNEE represents a fractional bias compared to the range of 225 

annual variation. (For example a normalized biasNEE of 0.1 means that the magnitude of the bias equals 

10% of the annual variation.) The mean of the absolute biasNEE will be the mean absolute error (MAE), 

which is also used as a measure for error in this research. An example of such normalization is shown 

for the station BE-Bra in Figure 2.  

https://doi.org/10.5194/gmd-2019-173
Preprint. Discussion started: 23 July 2019
c© Author(s) 2019. CC BY 4.0 License.



 7 

 3 Results and Discussion 230 

3.1 Error attribution on site level 

By comparing the NEE output from each experimental simulation, the impact of each error source on 

flux forecasting can be isolated and evaluated. The normalized mean absolute error (MAE) of NEE at 

all 33 sites is presented in Table 3. The MAE of the total forecast error is 0.071, which is smaller than 

the VPRM model error of 0.159. This indicates that the forecast model is reasonably capable of 235 

predicting fluxes on diurnal time scales.  

3.1.1 Meteorological error 

Among all forecast errors, the meteorological error accounts for the largest contribution. The 

meteorological error can be decomposed into (2) analysis error and (3) meteorological forecast error. 

The former corresponds to using meteorological analysis rather than observational data, while the latter 240 

comes from the numerical meteorological forecasting, and can be estimated by comparing simulations 

b and a. The analysis error and meteorological forecast error are of the same order of magnitude, 

namely 0.046 and 0.065 respectively.  

The meteorological error is then analyzed further by dividing it into the photosynthetic part (bias-GPP) 

and the non-photosynthetic respiration part (biasR). The bias (defined in 2.2) distributions of 33×365 245 

data points are shown in Figure 3.  

In figure 3, panels (a), (b) and (c) share the same x-axis, and the bias in the y-axes can be combined as 

biasNEE= bias-GPP + biasR. Because a positive GPP bias will lead to a negative NEE bias, -GPP is used 

here to show its contribution to NEE. Bias-GPP has a larger vertical spread towards negative values, 

which means a systematic bias in GPP. In contrast biasR is basically symmetric about zero, which 250 

implies that the errors in temperature are random. 

This indicates that biasNEE is dominated by the photosynthetic part bias-GPP. Knowing that biasNEE is the 

result of biases in two meteorological variables used in the simulation, air temperature and downward 

shortwave radiation (SW), we can conclude that it is the errors in shortwave radiation that mainly 

contribute to the meteorological error. From the bias distribution in figure 3(b) we can also see that the 255 

GPP bias is concentrated in negative values, meaning a stronger CO2 uptake than the reference case.  

This pattern can also be seen at site level, as shown in figure 4 for the station BE-Bra. Figure 4(a) 

shows that during summer, there are several episodes when the forecast fails to correctly predict the 

low SW (indicating more cloud cover) in the observations. In figure 4(b) negative bias-GPP and biasNEE 

signals match well with these episode. It confirms the conclusion that the meteorological error is 260 

dominated by errors in SW, and it is due to incorrect prediction of clouds during summer. 

3.1.2 MODIS error 

The MODIS error consists of three parts: using NRT products, using extrapolation of indices, and using 

truncated time series, which are represented in simulations c, d and e respectively. In general, the 

MODIS error is less important compared to the meteorological error, and the errors due to data 265 

truncation, EVI extrapolation and LSWI extrapolation result in errors on the same order of magnitude: 
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0.015, 0.013 and 0.010 respectively.  

As described in section 2.1.1, the MODIS input data first need to be smoothed by a LOESS filter to 

reduce the noise. LOESS performs a local regression on the time series. Because the point at the end of 

the time series lacks a constraint from future data, it results in an error when the data are truncated. 270 

This error source is evaluated in simulation c, where for each 8 day value, only data before this time are 

filtered. Thus the only difference between simulation c and the reference simulation is whether each 

MODIS-derived index is constrained by all local data or only constrained by preceding data. 

Comparing simulation c and the reference simulation finds that the error due to lack of constraint from 

future MODIS data introduces an MAE of 0.015. 275 

For MODIS data extrapolation, different methods were tested in an attempt to minimize forecast error. 

Climatological values of EVI and LSWI were considered, but they lack the advantage of a data-driven 

approach for realistic estimation. After testing various alternatives, two simple methods were 

considered: linear extrapolation based on the last three data points and persistence (assuming the 

indices stay the same for the next 5 days). Figure 5 shows the NEE bias distribution by using linear 280 

extrapolation or persistence to predict EVI and LSWI. For both indices, using the assumption of 

persistence results in a smaller error. The biases for the two extrapolation methods have similar 

distributions, but there are more outliers for linear extrapolation. This is due to the fact that linear 

extrapolation results in larger errors when the data are fluctuating. 

Finally, the difference between using MODIS NRT data and standard data has to be considered. This 285 

includes the effect of using different attitude and ephemeris data in processing, as well as using 

different ancillary data products for the Level 2 processing. For L2 Land Surface Reflectance data, 

National Oceanic and Atmospheric Administration Global Forecast System (GFS) ancillary product are 

used instead of Global Data Assimilation System (GDAS) used in the standard processing (This is 

described at NASA’s Land, Atmosphere Near real-time Capability for EOS (LANCE) website 290 

https://earthdata.nasa.gov/earth-observation-data/near-real-time/near-real-time-versus-standard-

products).  

This presented a challenge, as no MODIS NRT data were archived for the test year 2014. Thus it was 

impossible to carry out a similar error evaluation as was done for other error sources. Therefore we first 

use NRT EVI and LSWI that we archived for 120 days from February to June 2018 to calculate the 295 

MAE of the two indices to standard products at all flux sites. The MAE of NRT EVI and LSWI for all 

sites are 0.018 and 0.026 respectively. Considering the mean EVI and LSWI, which are 0.21 and 0.11 

during this period, the magnitude of NRT EVI error is less than 10% of EVI’s magnitude while the 

number is 24% for the magnitude of NRT LSWI error.  

The impact of these NRT indices errors on the model is determined by the model’s sensitivity to EVI 300 

and LSWI. To investigate this sensitivity, we use the result from simulation d and the reference 

simulation, and look into the difference in input EVI and LSWI, and the corresponding difference in 

output NEE. The model’s sensitivity is different during the growing and the non-growing seasons, as in 

the non-growing season there would be no vegetation production anyway from a slight change of EVI 

and LSWI. 305 
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Therefore the model sensitivity is analyzed for each season separately, as shown in table 4. Difference 

in indices and the corresponding difference in daily NEE are applied with linear regression, and the rate 

of the linear function is regarded as model sensitivity. The maximum sensitivity for both EVI and 

LSWI both is in summer, with  -9.11 [µmole m-2 s-1 EVI-1] and -6.29 [µmole m-2 s-1 LSWI-1] 

respectively. By assuming that the 120 days of archived NRT data is representative for MODIS NRT 310 

error, we can estimate the upper limit of forecasting error (4), as it is shown in Figure 6. The 

normalized NEE error in figure 6 is calculated by using MODIS NRT error times the model sensitivity, 

and then normalized by the same scalar in previous analysis at each site. Therefore the error here is 

comparable to the MAE in table 3 if we assume the MODIS NRT data in the year 2014 and 2018 have 

similar error structure. The NEE error for all sites due to NRT-EVI and NRT-LSWI are 0.024 and 315 

0.025 respectively, which is still less important comparing to the meteorology error in table 3.  

3.1.3 VPRM model error 

Unlike the forecast error discussed above, the biasNEE of (1) model error (reference model minus 

observation) distribution of the VPRM model error is asymmetric, as shown in Figure 7. The model 

bias shows a negative correlation, which means a weaker uptake during the growing season and a 320 

weaker respiration during the non-growing season. Data with negative normalized NEE also 

correspond to a larger bias, which refers to larger model uncertainty during the growing season. The 

MAE of the model error is 0.166.  

3.1.4 Errors at each flux observation site 

The MAE is also calculated at each flux measurement site and clustered according to vegetation types, 325 

shown in figure 8. Generally the VPRM model error (grey) is larger or similar to the forecast error 

(blue), consistent with Table 3. Moreover the forecast error does not differ significantly over different 

vegetation types. Figure 9 shows the error contribution from each source, the meteorological error 

(error (2) in dark blue and error (3) in light blue) at each site is also the dominant contributor, and has a 

similar contribution for different vegetation types. The data truncation error (4) has a stronger influence 330 

on some grass sites, because EVI at these sites is highly variable, possibly due to mowing and re-

growing during the growing season. Overall, except the data truncation error, all forecast error sources 

have a similar impact on each flux observation site. This shows that the forecast ability does not vary 

over different vegetation types. 

3.2 Spatial pattern of forecast error 335 

The forecast errors are also tested on the European domain from March to June (the season over which 

the CoMet campaign took place) in 2014, to analyze its spatial patterns. Three experiments have been 

done to represent the meteorological error (includes analysis error and met forecast error), the MODIS 

error (including extrapolation error and data truncation error) and the total forecast error (a 

combination of meteorological error and MODIS error). Figure 10 shows the mean VPRM NEE during 340 

the period and the corresponding spatial distribution of each error (in MAE).  
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By comparing Figures 10(a) and 10(b), it can be seen that the MAE of the total forecast error has a 

strong spatial relationship with the mean NEE, which indicates that the forecast error has a similar 

impact in all places. On a spatial level, the meteorological component still dominates compared to the 

MODIS error.  345 

In the context of atmospheric CO2 forecasting, the forecast CO2 concentrations that are influenced by 

fluxes from larger MAE areas (northern France, Germany and the Balkans) may have a larger bias due 

to poorer flux prediction in these areas. 

The flux budget over the European domain was also calculated and is shown in Figure 11. The carbon 

budget of the flux forecast model (in dark blue) is close to the original VPRM model (in grey), thus we 350 

are able to confidently use this flux forecast model in the atmospheric GHG concentration forecasting 

system and predict reasonable CO2 concentrations on synoptic time scales. 

As mentioned in the introduction, we are aiming for not only a flux forecast, but finally an atmospheric 

GHG concentration forecasting system. While this study has quantified how each error source affects 

the predicted biospheric fluxes, the next step is to use such flux prediction in an atmospheric transport 355 

model run in forecast mode, and to assess the prediction error from each source in concentration space.  

4 Conclusions 

Based on the VPRM model, we developed a forecasting model that can predict biospheric NEE for the 

next five days, and assess the error contribution from each aspect of forecasting. This CO2 flux forecast 

model is a crucial component in an atmospheric CO2 forecasting system, in which hourly to day-to-day 360 

CO2 flux variability plays an important role. The forecast model inputs are MODIS near-real-time EVI 

and LSWI, as well as shortwave radiation and temperature from a meteorological forecast model. The 

error attribution shows that the dominant error is related to the meteorological data, due to poor 

prediction of clouds and thus an overestimation of shortwave radiation in the meteorological model. 

Error from MODIS inputs are less important, and using a persistence assumption to predict MODIS 365 

indices resulted in smaller errors than a linear extrapolation. Overall the forecasting system error has a 

MAE of 0.071, which makes the model capable of forecasting CO2 fluxes on the target time scale. The 

error contribution is insensitive to vegetation type and consistent over the whole EU domain. The error 

of the forecasting system is less than the VPRM model error, which means that the system performs 

sufficiently well for its predictive task. From the spatial distribution of the error, the absolute flux 370 

errors are larger in northern France, Germany and the Balkans, which will lead to larger bias in 

atmospheric CO2 forecasting system. The assessment of these (and other) errors in concentration space, 

using measurements from the CoMet mission as reference data, is foreseen as a follow-up study. 

 

Code and data availability. The code for forecast VPRM model and the model outputs are available 375 

from http://dx.doi.org/10.17617/3.2d.  The code used for model assessment and figure plotting in this 

paper is also included in the same repository. The flux measurement data can be acquired from 

FLUXNET2015 database (see DOI in table 1). The MODIS indices data can be acquired from NASA’s 

Earth Science Data Systems (https://earthdata.nasa.gov/). The ECMWF meteorology data can be 
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retrieved using  ECMWF’s Meteorological Archival and Retrieval System (MARS, 380 

https://confluence.ecmwf.int/display/UDOC/MARS+user+documentation).  

 

Author contribution. The experiments were planned by C. Gerbig, J. Marshall, K.U. Totsche and J. 

Chen. C. Gerbig prepared the standard VPRM model. J. Chen made the forecast model and performed 

the model simulation and assessment. J. Marshall extensively commented and revised the manuscript. 385 

J. Chen prepared the manuscript with contribution from all co-authors.  

 

Acknowledgements. We acknowledge funding for the CoMet campaign by MPG (Max Planck society) 

and by BMBF (German Federal Ministry of Education and Research) through AIRSPACE (FK 

01LK1701C), and the PhD project funding from the International Max Planck Research School for 390 

Global Biogeochemical Cycles (IMPRS-gBGC). We acknowledge the use of data products from the 

Land, Atmosphere Near real-time Capability for EOS (LANCE) system operated by NASA's Earth 

Science Data and Information System (ESDIS) with funding provided by NASA Headquarters. We 

acknowledge ECMWF for providing access to the ECMWF’s archived data. This work used eddy 

covariance data acquired and shared by the FLUXNET community, including these networks: 395 

AmeriFlux, AfriFlux, AsiaFlux, CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont, ChinaFlux, 

Fluxnet-Canada, GreenGrass, ICOS, KoFlux, LBA, NECC, OzFlux-TERN, TCOS-Siberia, and 

USCCC. The ERA-Interim reanalysis data are provided by ECMWF and processed by LSCE. The 

FLUXNET eddy covariance data processing and harmonization was carried out by the European 

Fluxes Database Cluster, AmeriFlux Management Project, and Fluxdata project of FLUXNET, with the 400 

support of CDIAC and ICOS Ecosystem Thematic Center, and the OzFlux, ChinaFlux and AsiaFlux 

offices. 

References 

Agusti-Panareda, A., Massart, S., Chevallier, F., Boussetta, S., Balsamo, G., Beljaars, A., Ciais, P., 

Deutscher, N. M., Engelen, R., Jones, L., Kivi, R., Paris, J. D., Peuch, V. H., Sherlock, V., Vermeulen, 405 

A. T., Wennberg, P. O., and Wunch, D.: Forecasting global atmospheric CO2, Atmos Chem Phys, 14, 

11959-11983, 10.5194/acp-14-11959-2014, 2014. 

Agusti-Panareda, A., Massart, S., Chevallier, F., Balsamo, G., Boussetta, S., Dutra, E., and Beljaars, 

A.: A biogenic CO2 flux adjustment scheme for the mitigation of large-scale biases in global 

atmospheric CO2 analyses and forecasts, Atmos Chem Phys, 16, 10399-10418, 10.5194/acp-16-10399-410 

2016, 2016. 

Amediek, A., Ehret, G., Fix, A., Wirth, M., Budenbender, C., Quatrevalet, M., Kiemle, C., and Gerbig, 

C.: CHARM-F-a new airborne integrated-path differential-absorption lidar for carbon dioxide and 

methane observations: measurement performance and quantification of strong point source emissions, 

Appl Optics, 56, 5182-5197, 10.1364/Ao.56.005182, 2017. 415 

https://doi.org/10.5194/gmd-2019-173
Preprint. Discussion started: 23 July 2019
c© Author(s) 2019. CC BY 4.0 License.



 12 

Anthoni, P., Knohl, A., Rebmann, C., Freibauer, A., Mund, M., Ziegler, W., Kolle, O., and Schulze, E. 

D.: Forest and agricultural land‐use‐dependent CO2 exchange in Thuringia, Germany, Global 

Change Biology, 10, 2005-2019, 2004. 

Aubinet, M., Chermanne, B., Vandenhaute, M., Longdoz, B., Yernaux, M., and Laitat, E.: Long term 

carbon dioxide exchange above a mixed forest in the Belgian Ardennes, Agricultural and Forest 420 

Meteorology, 108, 293-315, 2001. 

Aulagnier, C., Rayner, P., Ciais, P., Vautard, R., Rivier, L., and Ramonet, M.: Is the recent build-up of 

atmospheric CO2 over Europe reproduced by models. Part 2: an overview with the atmospheric 

mesoscale transport model CHIMERE, Tellus B, 62, 14-25, 10.1111/j.1600-0889.2009.00443.x, 2010. 

Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., 425 

Davis, K., and Evans, R.: FLUXNET: A new tool to study the temporal and spatial variability of 

ecosystem-scale carbon dioxide, water vapor, and energy flux densities, Bulletin of the American 

Meteorological Society, 82, 2415-2434, 2001. 

Beck, V., Koch, T., Kretschmer, R., Marshall, J., Ahmadov, R., Gerbig, C., Pillai, D., and Heimann, 

M.: The WRF Greenhouse Gas Model (WRF-GHG), Technical Report No. 25, Max Planck Institute 430 

for Biogeochemistry, Jena, Germany, available at: http://www.bgc-jena.mpg.de/bgc-

systems/index.shtml 2011. 

Bernhofer, C., Grünwald, T., Moderow, U., Hehn, M., Eichelmann, U., and Prasse, H.: 

FLUXNET2015 DE-Spw Spreewald, 10.18140/FLX/1440220,  

Boussetta, S., Balsamo, G., Beljaars, A., Panareda, A. A., Calvet, J. C., Jacobs, C., van den Hurk, B., 435 

Viterbo, P., Lafont, S., Dutra, E., Jarlan, L., Balzarolo, M., Papale, D., and van der Werf, G.: Natural 

land carbon dioxide exchanges in the ECMWF integrated forecasting system: Implementation and 

offline validation, J Geophys Res-Atmos, 118, 5923-5946, 10.1002/jgrd.50488, 2013. 

Butz, A., Dinger, A. S., Bobrowski, N., Kostinek, J., Fieber, L., Fischerkeller, C., Giuffrida, G. B., 

Hase, F., Klappenbach, F., and Kuhn, J.: Remote sensing of volcanic CO2, HF, HCl, SO2, and BrO in 440 

the downwind plume of Mt. Etna, Atmos Meas Tech, 2017. 

Delpierre, N., Berveiller, D., Granda, E., and Dufrêne, E.: Wood phenology, not carbon input, controls 

the interannual variability of wood growth in a temperate oak forest, New Phytologist, 210, 459-470, 

2016. 

Dietiker, D., Buchmann, N., and Eugster, W.: Testing the ability of the DNDC model to predict CO2 445 

and water vapour fluxes of a Swiss cropland site, Agriculture, ecosystems & environment, 139, 396-

401, 2010. 

Dušek, J., Čížková, H., Stellner, S., Czerný, R., and Květ, J.: Fluctuating water table affects gross 

ecosystem production and gross radiation use efficiency in a sedge-grass marsh, Hydrobiologia, 692, 

57-66, 2012. 450 

Etzold, S., Ruehr, N. K., Zweifel, R., Dobbertin, M., Zingg, A., Pluess, P., Häsler, R., Eugster, W., and 

Buchmann, N.: The carbon balance of two contrasting mountain forest ecosystems in Switzerland: 

similar annual trends, but seasonal differences, Ecosystems, 14, 1289-1309, 2011. 

https://doi.org/10.5194/gmd-2019-173
Preprint. Discussion started: 23 July 2019
c© Author(s) 2019. CC BY 4.0 License.



 13 

Fares, S., Savi, F., Muller, J., Matteucci, G., and Paoletti, E.: Simultaneous measurements of above and 

below canopy ozone fluxes help partitioning ozone deposition between its various sinks in a 455 

Mediterranean Oak Forest, Agricultural and forest meteorology, 198, 181-191, 2014. 

Ferréa, C., Zenone, T., Comolli, R., and Seufert, G.: Estimating heterotrophic and autotrophic soil 

respiration in a semi-natural forest of Lombardy, Italy, Pedobiologia, 55, 285-294, 2012. 

Galvagno, M., Wohlfahrt, G., Cremonese, E., Rossini, M., Colombo, R., Filippa, G., Julitta, T., Manca, 

G., Siniscalco, C., and di Cella, U. M.: Phenology and carbon dioxide source/sink strength of a 460 

subalpine grassland in response to an exceptionally short snow season, Environmental Research 

Letters, 8, 025008, 2013. 

Gerilowski, K., Tretner, A., Krings, T., Buchwitz, M., Bertagnolio, P. P., Belemezov, F., Erzinger, J., 

Burrows, J. P., and Bovensmann, H.: MAMAP - a new spectrometer system for column-averaged 

methane and carbon dioxide observations from aircraft: instrument description and performance 465 

analysis, Atmos Meas Tech, 4, 215-243, 10.5194/amt-4-215-2011, 2011. 

GrüNwald, T., and Bernhofer, C.: A decade of carbon, water and energy flux measurements of an old 

spruce forest at the Anchor Station Tharandt, Tellus B: Chemical and Physical Meteorology, 59, 387-

396, 2007. 

Hommeltenberg, J., Schmid, H., Drösler, M., and Werle, P.: Can a bog drained for forestry be a 470 

stronger carbon sink than a natural bog forest?, Biogeosciences, 11, 3477-3493, 2014. 

Imer, D., Merbold, L., Eugster, W., and Buchmann, N.: Temporal and spatial variations of soil CO 2, 

CH 4 and N 2 O fluxes at three differently managed grasslands, Biogeosciences, 10, 5931-5945, 2013. 

IPCC: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II, and III to the 

Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. 475 

Pachauri and L.A. Meyer (eds.)], IPCC, Geneva, Switzerland, 151 pp., 2014. 

Jung, M., Henkel, K., Herold, M., and Churkina, G.: Exploiting synergies of global land cover products 

for carbon cycle modeling, Remote Sens Environ, 101, 534-553, 2006. 

Kountouris, P., Gerbig, C., Rödenbeck, C., Karstens, U., Koch, T. F., and Heimann, M.: Atmospheric 

CO 2 inversions on the mesoscale using data-driven prior uncertainties: methodology and system 480 

evaluation, Atmos Chem Phys, 18, 3027-3045, 2018. 

Le Quere, C., Raupach, M. R., Canadell, J. G., Marland, G., Bopp, L., Ciais, P., Conway, T. J., Doney, 

S. C., Feely, R. A., Foster, P., Friedlingstein, P., Gurney, K., Houghton, R. A., House, J. I., 

Huntingford, C., Levy, P. E., Lomas, M. R., Majkut, J., Metzl, N., Ometto, J. P., Peters, G. P., Prentice, 

I. C., Randerson, J. T., Running, S. W., Sarmiento, J. L., Schuster, U., Sitch, S., Takahashi, T., Viovy, 485 

N., van der Werf, G. R., and Woodward, F. I.: Trends in the sources and sinks of carbon dioxide, Nat 

Geosci, 2, 831-836, 10.1038/ngeo689, 2009. 

Lin, J. C., Pejam, M. R., Chan, E., Wofsy, S. C., Gottlieb, E. W., Margolis, H. A., and McCaughey, J. 

H.: Attributing uncertainties in simulated biospheric carbon fluxes to different error sources, Global 

Biogeochem Cy, 25, Artn Gb2018 490 

10.1029/2010gb003884, 2011. 

Mahadevan, P., Wofsy, S. C., Matross, D. M., Xiao, X. M., Dunn, A. L., Lin, J. C., Gerbig, C., 

Munger, J. W., Chow, V. Y., and Gottlieb, E. W.: A satellite-based biosphere parameterization for net 

https://doi.org/10.5194/gmd-2019-173
Preprint. Discussion started: 23 July 2019
c© Author(s) 2019. CC BY 4.0 License.



 14 

ecosystem CO2 exchange: Vegetation Photosynthesis and Respiration Model (VPRM), Global 

Biogeochem Cy, 22, Artn Gb2005 495 

10.1029/2006gb002735, 2008. 

Marcolla, B., Pitacco, A., and Cescatti, A.: Canopy architecture and turbulence structure in a 

coniferous forest, Boundary-layer meteorology, 108, 39-59, 2003. 

Mauder, M., Cuntz, M., Drüe, C., Graf, A., Rebmann, C., Schmid, H. P., Schmidt, M., and 

Steinbrecher, R.: A strategy for quality and uncertainty assessment of long-term eddy-covariance 500 

measurements, Agricultural and Forest Meteorology, 169, 122-135, 2013. 

Merbold, L., Eugster, W., Stieger, J., Zahniser, M., Nelson, D., and Buchmann, N.: Greenhouse gas 

budget (CO 2, CH 4 and N2O) of intensively managed grassland following restoration, Global change 

biology, 20, 1913-1928, 2014. 

Moureaux, C., Debacq, A., Bodson, B., Heinesch, B., and Aubinet, M.: Annual net ecosystem carbon 505 

exchange by a sugar beet crop, Agricultural and Forest Meteorology, 139, 25-39, 2006. 

Pilegaard, K., Ibrom, A., Courtney, M. S., Hummelshøj, P., and Jensen, N. O.: Increasing net CO2 

uptake by a Danish beech forest during the period from 1996 to 2009, Agricultural and Forest 

Meteorology, 151, 934-946, 2011. 

Pillai, D., Buchwitz, M., Gerbig, C., Koch, T., Reuter, M., Bovensmann, H., Marshall, J., and Burrows, 510 

J. P.: Tracking city CO2 emissions from space using a high-resolution inverse modelling approach: a 

case study for Berlin, Germany, Atmos Chem Phys, 16, 9591-9610, 10.5194/acp-16-9591-2016, 2016. 

Post, H., Hendricks Franssen, H.-J., Graf, A., Schmidt, M., and Vereecken, H.: Uncertainty analysis of 

eddy covariance CO 2 flux measurements for different EC tower distances using an extended two-

tower approach, Biogeosciences, 12, 1205-1221, 2015. 515 

Potter, C. S., Randerson, J. T., Field, C. B., Matson, P. A., Vitousek, P. M., Mooney, H. A., and 

Klooster, S. A.: Terrestrial Ecosystem Production - a Process Model-Based on Global Satellite and 

Surface Data, Global Biogeochem Cy, 7, 811-841, Doi 10.1029/93gb02725, 1993. 

Prescher, A.-K., Grünwald, T., and Bernhofer, C.: Land use regulates carbon budgets in eastern 

Germany: From NEE to NBP, Agricultural and Forest Meteorology, 150, 1016-1025, 2010. 520 

Rambal, S., Joffre, R., Ourcival, J., Cavender‐Bares, J., and Rocheteau, A.: The growth respiration 

component in eddy CO2 flux from a Quercus ilex mediterranean forest, Global Change Biology, 10, 

1460-1469, 2004. 

Running, S. W., and Hunt Jr, E. R.: Generalization of a forest ecosystem process model for other 

biomes, BIOME-BCG, and an application for global-scale models, 1993. 525 

Running, S. W., Thornton, P. E., Nemani, R., and Glassy, J. M.: Global terrestrial gross and net 

primary productivity from the Earth Observing System, in: Methods in ecosystem science, Springer, 

44-57, 2000. 

Sabbatini, S., Arriga, N., Bertolini, T., Castaldi, S., Chiti, T., Consalvo, C., Djomo, S. N., Gioli, B., 

Matteucci, G., and Papale, D.: Greenhouse gas balance of cropland conversion to bioenergy poplar 530 

short-rotation coppice, Biogeosciences, 13, 95-113, 2016. 

https://doi.org/10.5194/gmd-2019-173
Preprint. Discussion started: 23 July 2019
c© Author(s) 2019. CC BY 4.0 License.



 15 

Suni, T., Rinne, J., Reissell, A., Altimir, N., Keronen, P., Rannik, U., Maso, M., Kulmala, M., and 

Vesala, T.: Long-term measurements of surface fluxes above a Scots pine forest in Hyytiala, southern 

Finland, 1996-2001, Boreal Environment Research, 8, 287-302, 2003. 

Thum, T., Aalto, T., Laurila, T., Aurela, M., Kolari, P., and Hari, P.: Parametrization of two 535 

photosynthesis models at the canopy scale in a northern boreal Scots pine forest, Tellus B, 59, 874-890, 

2007. 

Valentini, R., De Angelis, P., Matteucci, G., Monaco, R., Dore, S., and Mucnozza, G. S.: Seasonal net 

carbon dioxide exchange of a beech forest with the atmosphere, Global Change Biology, 2, 199-207, 

1996. 540 

Vitale, L., Di Tommasi, P., D’Urso, G., and Magliulo, V.: The response of ecosystem carbon fluxes to 

LAI and environmental drivers in a maize crop grown in two contrasting seasons, International journal 

of biometeorology, 60, 411-420, 2016. 

Woodward, F. I., Smith, T. M., and Emanuel, W. R.: A Global Land Primary Productivity and 

Phytogeography Model, Global Biogeochem Cy, 9, 471-490, Doi 10.1029/95gb02432, 1995. 545 

Xiao, X. M., Hollinger, D., Aber, J., Goltz, M., Davidson, E. A., Zhang, Q. Y., and Moore, B.: 

Satellite-based modeling of gross primary production in an evergreen needleleaf forest, Remote Sens 

Environ, 89, 519-534, 10.1016/j.rse.2003.11.008, 2004. 

Zhuang, Q., McGuire, A. D., Melillo, J. M., Clein, J. S., Dargaville, R. J., Kicklighter, D. W., Myneni, 

R. B., Dong, J., Romanovsky, V. E., Harden, J., and Hobbie, J. E.: Carbon cycling in extratropical 550 

terrestrial ecosystems of the Northern Hemisphere during the 20th century: a modeling analysis of the 

influences of soil thermal dynamics, Tellus B, 55, 751-776, DOI 10.1034/j.1600-0889.2003.00060.x, 

2003. 

Zielis, S., Etzold, S., Zweifel, R., Eugster, W., Haeni, M., and Buchmann, N.: NEP of a Swiss 

subalpine forest is significantly driven not only by current but also by previous year's weather, 555 

Biogeosciences, 11, 1627-1635, 2014. 

 

 
 

 560 

https://doi.org/10.5194/gmd-2019-173
Preprint. Discussion started: 23 July 2019
c© Author(s) 2019. CC BY 4.0 License.



 16 

 
Figure 1: Diagram of the VPRM forecasting system. The top two levels show the drivers which are 
predicted into the future, while the bottom three boxes are based on the standard VPRM model 
(Mahadevan et al., 2008). 
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Site ID Latitude Longitude 
Vegetation 

types in VPRM 
Data DOI Reference 

BE-Bra 51,3092 4,5206 Mixfrst 10.18140/FLX/1440128 (Janssens et al.) 

BE-Lon 50,5516 4,7461 Crop  10.18140/FLX/1440129 (Moureaux et al., 2006) 

BE-Vie 50,3051 5,9981 Mixfrst 10.18140/FLX/1440130 (Aubinet et al., 2001) 

CH-Cha 47,2102 8,4104 Grass 10.18140/FLX/1440131 (Merbold et al., 2014) 

CH-Dav 46,8153 9,8559 Evergreen 10.18140/FLX/1440132 (Zielis et al., 2014) 

CH-Fru 47,1158 8,5378 Grass 10.18140/FLX/1440133 (Imer et al., 2013) 

CH-Lae 47,4781 8,365 Mixfrst 10.18140/FLX/1440134 (Etzold et al., 2011) 

CH-Oe2 47,2863 7,7343 Crop 10.18140/FLX/1440136 (Dietiker et al., 2010) 

CZ-wet 49,0247 14,7704 Grass 10.18140/FLX/1440145 (Dušek et al., 2012) 

DE-Akm 53,8662 13,6834 Grass 10.18140/FLX/1440213 (Bernhofer et al.) 

DE-Geb 51,1001 10,9143 Crop 10.18140/FLX/1440146 (Anthoni et al., 2004) 

DE-Gri 50,9495 13,5125 Grass 10.18140/FLX/1440147 (Prescher et al., 2010) 

DE-Kli 50,8929 13,5225 Crop 10.18140/FLX/1440149 (Prescher et al., 2010) 

DE-Obe 50,7836 13,7196 Evergreen 10.18140/FLX/1440151 (Bernhofer et al.) 

DE-RuR 50,6219 6,3041 Grass 10.18140/FLX/1440215 (Post et al., 2015) 

DE-RuS 50,8659 6,4472 Crop 10.18140/FLX/1440216 (Mauder et al., 2013) 

DE-SfN 47,8064 11,3275 Grass 10.18140/FLX/1440219 (Hommeltenberg et al., 2014) 

DE-Spw 51,8923 14,0337 Grass 10.18140/FLX/1440220 (Bernhofer et al.) 

DE-Tha 50,9636 13,5669 Evergreen 10.18140/FLX/1440152 (GrüNwald and Bernhofer, 2007) 

DK-Sor 55,4859 11,6446 Decid 10.18140/FLX/1440155 (Pilegaard et al., 2011) 

FI-Hyy 61,8475 24,295 Evergreen 10.18140/FLX/1440158 (Suni et al., 2003) 

FI-Sod 67,3619 26,6378 Evergreen 10.18140/FLX/1440160 (Thum et al., 2007) 

FR-Fon 48,4764 2,7801 Decid 10.18140/FLX/1440161 (Delpierre et al., 2016) 

FR-Pue 43,7414 3,5958 Evergreen 10.18140/FLX/1440164 (Rambal et al., 2004) 

IT-BCi 40,5238 14,9574 Crop 10.18140/FLX/1440166 (Vitale et al., 2016) 

IT-CA1 42,3804 12,0266 Decid 10.18140/FLX/1440230 (Sabbatini et al., 2016) 

IT-CA2 42,3772 12,026 Crop 10.18140/FLX/1440231 (Sabbatini et al., 2016) 

IT-CA3 42,38 12,0222 Decid 10.18140/FLX/1440232 (Sabbatini et al., 2016) 

IT-Col 41,8494 13,5881 Decid 10.18140/FLX/1440167 (Valentini et al., 1996) 

IT-Cp2 41,7043 12,3573 Evergreen 10.18140/FLX/1440233 (Fares et al., 2014) 

IT-Isp 45,8126 8,6336 Decid 10.18140/FLX/1440234 (Ferréa et al., 2012) 

IT-Lav 45,9562 11,2813 Evergreen 10.18140/FLX/1440169 (Marcolla et al., 2003) 

IT-Tor 45,8444 7,5781 Grass 10.18140/FLX/1440237 (Galvagno et al., 2013) 

Table 1: The selected FLUXNET2015 sites used for data-model comparison in this research. 
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 MODIS indices Meteorology data Error sources 

Reference 

simulation 

Standard MODIS products Flux site observation (1) 

Simulation a Standard MODIS products ECMWF 12h 

forecasting 

(1)+(2) 

Simulation b Standard MODIS products ECMWF 5th day 

forecasting 

(1)+(2)+(3) 

Simulation c Truncated MODIS indices Flux site observation (1)+(5) 

Simulation d MODIS prediction based on 

fully filtered data 

Flux site observation (1)+(6) 

Simulation e NRT MODIS indices Flux site observation (1)+(4) 

Simulation f MODIS prediction based on 

truncated data 

ECMWF 5th day 

forecasting 

(1)+(2)+(3)+(5)+(6) 

Table 2: The experiment setup and the error sources addressed in each simulation. The numbering in the 595 
last column corresponds to the error from (1) the VPRM model, (2) the meteorological analysis, (3) the 
meteorological forecast, (4) the MODIS NRT data, (5) data truncation and (6) the prediction of MODIS 
indices. 

 

 600 

 
Figure 2: Example of the data normalization at station BE-Bra: (a) NEE output from simulation a, and the 

corresponding biasNEE. The dashed black lines show the range of annual NEE. (b) NEE and bias after 

normalization by the range, conserving the physical meaning (release and uptake) of the sign. 
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Normalized Mean Absolute Error (MAE) for each error source 

Compared objects Error sources MAE 

a-ref. (2) Meteorological analysis 0.046 

b-a (3) Meteorological forecast 0.040 

b-ref. (2)+(3) Meteorological error 0.065 

c-ref. (5) Data truncation 0.015 

d-ref. (6a-i) Linear EVI 0.016 

d-ref. (6a-ii) Persistence EVI 0.013 

d-ref. (6b-i) Linear LSWI 0.012 

d-ref. (6b-ii) Persistence LSWI 0.010 

f-ref. (2)+(3)+(5)+(6a-ii)+(6b-ii) Forecast error 0.071 

ref.-obs. (1) Model error 0.159 

Table 3: Normalized Mean Absolute error (MAE) for each error source. The compared objects are 

simulation a to f, the reference simulation (ref.) and FLUXNET observation (obs.). Error sources (1) to (6) 

described in 2.2 can be isolated by calculating the MAE between different simulations.  615 
 

 

 
Figure 3: (a) Distribution of normalized biasNEE due to meteorological error. The x-axis refers to the 
normalized NEE, and the y-axis refers to the corresponding biasNEE defined in section 2.2. Panels (b) and 620 
(c) share the same x-axis with (a), but have bias-GPP and biasR in y-axis instead. The three biases combine 
as biasNEE= bias-GPP + biasR, indicating that biasNEE is dominated by bias-GPP, which is controlled by 
the radiation parameter rather than temperature. 
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Figure 4: (a) Downward shortwave radiation from site-level measurement and from 5-day forecasts at 625 
station BE-Bra. (b) biasNEE, bias-GPP and biasR  at station BE-Bra. As the biases are combined as 

biasNEE= bias-GPP + biasR, this figure confirms that the large negative biasNEE is due to bias-GPP, and 

the reason is that NWP overestimate SW for cloudy days in summer. 
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Figure 5: biasNEE distribution of using linear extrapolation or persistence to predict EVI and LSWI. The 

persistence prediction introduces less bias than linear extrapolation for both EVI and LSWI. Therefore 

persistence is used in the final forecast.  

 635 

NEE sensitivity to EVI NEE sensitivity to LSWI 

Seasons 
Sensitivity 

[µmole m-2 s-1 EVI-1] 
R2 Seasons 

Sensitivity 

[µmole m-2 s-1 LSWI-1] 
R2 

Dec - Feb -0.90 0.27 Dec - Feb -0.57 0.28 

Mar - May -7.96 0.64 Mar - May -3.41 0.51 

Jun - Aug -9.11 0.74 Jun - Aug -6.29 0.58 

Sep - Jan -2.70 0.35 Sep - Jan -1.16 0.29 

Table 4: The model’s sensitivity of NEE to EVI/LSWI for four seasons. The result of simulation d is used in 

the sensitivity calculation. Linear regression is applied to the change in EVI and the change in 

corresponding NEE, the maximum sensitivity appears in summer, with a slope of -10.73 [µmole m-2 s-1 

EVI-1] for EVI and -6.29 [µmole m-2 s-1 LSWI-1] for LSWI respectively. 
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 640 
Figure 6: The normalized error of NEE as a result of MODIS NRT error at 33 sites. 120 days from 

February to June in the year 2018 of MODIS NRT data are used to first calculate the EVI/LSWI 

differences, then times the sensitivities in table 4 and normalized by the same scalar in the previous 

research. The flux sites in x-axis are sorted by vegetation type and FLUXNET site-ID (from left to right: 

CH-Cha, CH-Fru, CZ-wet, DE-Akm, DE-Gri, DE-RuR, DE-SfN, DE-Spw, IT-Tor, CH-Dav, DE-Obe, DE-645 
Tha, FI-Hyy, FI-Sod, FR-Pue, IT-Cp2, IT-Lav, DK-Sor, FR-Fon, IT-CA1, IT-CA3, IT-Col, IT-Isp, BE-Bra, 

BE-Vie, CH-Lae, BE-Lon, CH-Oe2, DE-Geb, DE-Kli, DE-Rus, IT-BCi, IT-CA2). 
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Figure 7: The biasNEE distribution of the VPRM model error. 
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Figure 8: Mean absolute error of the forecast error compared to the VPRM model error at each flux 655 
observation site. The model error (1) is generally larger than the total forecast error (2) to (6), and the 

forecast error does not differ significantly across vegetation types. The order of the flux site is the same as in 

figure 6. 

 
Figure 9: Mean absolute error for different error sources at each flux observation site. The meteorological 660 
error ((2)meteorological model + (3)meteorological forecast) is the dominant contributor at each site, and 

has a similar contribution for different vegetation types. The data truncation error (4) has a stronger 

influence on some grass sites, likely due to the highly EVI variability resulting from mowing and regrowth 

during the growing season. The order of the flux site is the same as in figure 6. 
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665 
 Figure 10: (a) Mean VPRM NEE, during March to June 2014; (b) Spatial distribution of MAE for forecast 

error; (c) spatial distribution of MAE for meteorological error; (d) spatial distribution of MAE for MODIS 

error. The MAE of total forecast error in (b) has strong spatial relationship with the VPRM mean flux in 

(a), which indicates that the forecast error has a similar impact in all places. Panels (c) and (d) are 

consistent with table 3, in that the forecast error is larger than the error from MODIS prediction. 670 
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Figure 11: Monthly carbon budget from March to June for original and forecast model for the European 

domain. The overall forecast flux budget is close to the original model, indicating the forecast flux model is 

appropriate for use in the GHG concentration forecasting system. 
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